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A b s t r a c t

Introduction: Autophagy functions as a prosurvival mechanism in multiple 
myeloma (MM). The objective of this research was to establish an autopha-
gy-related gene (ARG) signature for predicting the survival outcomes of MM 
patients with TP53 mutations.
Material and methods: Information about MM patients with TP53 muta-
tions was downloaded from the Gene Expression Omnibus (GEO) database. 
Cox proportional hazard regression was employed to determine the inde-
pendent prognostic ARG and construct a risk signature. Time-dependent re-
ceiver-operating characteristic (tROC) curve analysis was used to explore the 
predictive accuracy of the prognostic model. A nomogram was constructed 
to give a  more precise prediction of the probability of 5-year, 8-year and  
10-year overall survival (OS). In addition, we used the CIBERSORT algorithm 
to explore the distribution difference of 22 immune-infiltrating cells.
Results: Three differentially expressed ARGs (CASP8, MAPK8, RB1CC1) were 
finally incorporated to construct the risk model. Area under the curve (AUC) 
values of the corresponding tROC curve for 5-year, 8-year and 10-year OS 
were 0.735, 0.686 and 0.662, respectively. Multiple myeloma patients were 
categorized into high and low-risk groups in accordance with the median 
threshold value (–1.724549). An ARG-based risk score model was an inde-
pendent prognostic element correlated with OS, giving an hazard ratio (HR) 
of 3.29 (95% CI 2.35–4.60, p < 0.001). Thirteen immune infiltrating cells 
were found to have distribution differences between the two groups.
Conclusions: We established a  three-ARG risk signature which manifested 
an independent prognostic factor. The nomogram was testified to perform 
well in forecasting the long-term survival of TP53-mutated MM patients.

Key words: multiple myeloma, autophagy, prognosis, risk signature, TP53 
mutation, immune-infiltrating cell.
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Introduction

Multiple myeloma (MM) represents the sec-
ond most common hematological malignancy. It 
is characterized by the proliferative disturbance 
of plasma cells within the bone marrow, result-
ing in excessive accumulation of monoclonal im-
munoglobulins in the blood or urine [1]. Multiple 
myeloma is often clinically manifested by “CRAB” 
symptoms (hypercalcemia, renal dysfunction, ane-
mia and bone lesions) [2]. Despite therapeutic im-
provements with wide combinative application of 
proteasome inhibitors, immunomodulatory agents, 
and monoclonal antibodies [3], MM remains an in-
curable disease with a high relapse rate and rela-
tively poor prognosis [4].

The TP53 gene, a well-known tumor suppres-
sive gene, is situated on chromosome 17p13.1 
and codes for the p53 protein. The P53 protein 
is described as “the guardian of the genome” for 
its pivotal role in maintaining genomic integrity 
and cellular homeostasis [5, 6]. TP53 mutation is 
an adverse prognostic factor in various cancers, 
including solid tumors and hematological ma-
lignancies such as acute myelogenous leukemia 
(AML), acute lymphocytic leukemia (ALL), chronic 
lymphocytic leukemia (CLL), myelodysplastic syn-
drome (MDS) and MM [7, 8]. Compared with MM 
patients without a TP53 mutation, TP53-mutated 
patients have shorter overall survival (OS) and 
a bleaker prognosis. TP53 mutation is exclusively 
correlated with del(17p) in MM [9–13].

Autophagy is a  highly-conserved multi-step 
metabolic process in which cellular proteins and 
organelles are engulfed by autophagosomes and 
then transported to lysosomes for degradation 
[14]. Tightly controlled and modulated by a  clus-
ter of autophagy-related genes (ARGs), it can be 
stimulated in adverse circumstances including 
nutrients deficiency, hypoxia and DNA damage. 
Autophagy plays a critical role in modulating cel-
lular self-clearance, providing energy and main-
taining homeostasis and survival by re-utilizing 
the components such as amino acids, fatty acids, 
and nucleotides [15]. Autophagy constitutes a dou-
ble-edged sword in tumorigenesis and progression. 
Whether autophagy promotes or represses cancer 
depends on the type and stage of specific cancer, 
which renders targeting autophagy in cancer treat-
ment controversial [16, 17]. In MM cells, protea-
some inhibition brings about the accumulation of 
misfolded proteins, thus instigating endoplasmic 
reticulum (ER) overload and stress through the 
unfolded protein response. Autophagy functions 
as a  prosurvival mechanism through which MM 
cells develop resistance to proteasome inhibitors 
and avoid excessive accumulation of toxic proteins 
[18]. So, targeting autophagy might be a promising 
therapeutic strategy to prompt cell apoptosis and 

restore drug sensitivity, thus augmenting the effi-
cacy of conventional chemotherapy [19, 20].

The above results corroborated the vital role of 
autophagy in MM, and ARGs might have clinical 
application as potential prognostic biomarkers. In 
contrast with a  single gene, a  prognostic model 
incorporating multiple ARGs may greatly enhance 
the predictive performance. To date, there have 
been few studies integrating an ARG expression 
signature for predicting the survival outcomes of 
MM patients with TP53 mutations. The objective 
of this study was to establish a more accurate pre-
dictive model with an ARG signature. TP53-mu-
tated MM patients were identified from the Gene 
Expression Omnibus (GEO) database and were 
subdivided into high and low risk groups in accor-
dance with the median predictive value. By apply-
ing the CIBERSORT method, we also explored the 
distribution difference of 22 immune-infiltrating 
cell subsets within the bone marrow microenvi-
ronment between the two groups.

Material and methods

Patient information and dataset processing

GSE136400 datasets were acquired from the 
GEO database (GEO, https://www.ncbi.nlm.nih.gov/
geo/) for the clinical characteristics, gene expres-
sion profile and OS information of MM patients.

ARGs were obtained by retrieving the Human 
Autophagy Database (HADb, http://autophagy.lu/
clustering/index.html).

Differentially expressed genes (DEGs) in MM 
patients with or without TP53 mutations were 
identified and analyzed by means of linear models 
for microarray data (LIMMA, the “limma” package 
of R software) [21]. DEGs, including both signifi-
cantly up-regulated and down-regulated genes, 
were determined using the Wilcoxon signed-rank 
test. The cut-off value was defined as the false 
discovery rate (FDR) < 0.05. The status of DEGs 
was demonstrated in a volcano plot and heatmap.

Enrichment analysis of differentially 
expressed autophagy-related genes 
(DEARGs)

We speculated that DEGs might be intersected 
with ARGs. We defined genes which overlapped 
on both databases as overlapping candidate genes 
(OCGs) or differentially expressed autophagy-relat-
ed genes (DEARGs). Subsequently, both Gene Ontol-
ogy (GO) functional enrichment analysis and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) path-
way analysis were conducted on DEARGs by using 
the “clusterProfiler” package in R software, with an 
adjusted p-value < 0.05 regarded as statistically sig-
nificant [22]. Also, gene sets with an FDR score<0.05 
were regarded as noticeably enriched [23]. 
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Survival analysis and establishment  
of prognostic model

Overall survival was calculated from the date of 
initial diagnosis until death from all causes or the 
last follow-up, whichever came first. Kaplan-Meier 
survival curves for OS were plotted with the pur-
pose of comparing each potential highly and lowly 
expressed DEARG. The log-rank test was used to 
evaluate a DEARG which might be associated with 
the prognosis, with a p-value < 0.05 deemed sta-
tistically significant. Then DEARGs with potential 
prognostic value were initially selected by means 
of univariate Cox regression model. Least absolute 
shrinkage and selection operator (LASSO) regres-
sion was then utilized to eliminate false positive 
DEARGs because of over-fitting. DEARGs with 
a  p-value < 0.05 in the univariate results were 
integrated into the multivariate analysis to deter-
mine the independent prognostic factors associ-
ated with OS and then construct a risk signature.

The risk score for each individual patient was 
quantified by the following formula: risk scores 
= S

i = 1,2...n
 b(DEARGi) × Exp(i), where b represents 

the regression coefficient for each DEARG derived 
from the multivariate Cox regression and Exp indi-
cates the relative expression levels of each DEARG 
standardized by the Z-score. Patients (in the train-
ing set) were categorized into high- and low-risk 
groups using the median risk score as the thresh-
old. A high risk score represented a bleaker prog-
nosis than a low risk score. The survival difference 
between the above two groups was also evaluat-
ed by Kaplan-Meier curve and then the log-rank 
test. Univariate and multivariate Cox regression 
analyses were further carried out to determine 
whether the DEARG-based risk score could be an 
independent prognostic factor in TP53-mutated 
MM patients. We adopted time-dependent re-
ceiver-operating characteristic (tROC) analysis to 
explore the predictive accuracy of the prognostic 
model, which could be quantified by the area un-
der the ROC curve (AUC).

Eventually, the “rms” package of R software 
was employed to construct the nomogram, which 
incorporated all independent prognostic param-
eters (perhaps including the DEARG-based risk 
model and other clinical factors), to give a more 
precise prediction of 5-year, 8-year and 10-year 
OS probability. Then, the concordance between 
actually observed and predicted survival was as-
sessed through calibration curves, in which the 
45° line denoted the best predictive performance.

CIBERSORT estimation of immune 
infiltration cells

The CIBERSORT (Cell type Identification By Es-
timating Relative Subsets Of RNA Transcripts) al-

gorithm, which is available through a web portal 
(http://cibersort.stanford.edu/), is based on a ma-
chine-learning approach named support vector re-
gression. The CIBERSORT algorithm was employed 
to calculate the proportions of 22 kinds of immune 
infiltrating cells including B cells, T cells, natural 
killer cells, macrophages, dendritic cells and so 
on [24]. For each TP53-mutated patient, the final 
CIBERSORT estimated-results were standardized 
and the proportions of 22 kinds of immune-infil-
trating cells summed up to 1. We then evaluat-
ed the proportion differences between high- and 
low-risk groups on the basis of the DEARG-based 
score [25].

Data availability

The data that support the results of our study 
are available in Gene Expression Omnibus (GEO) 
datasets at https://www.ncbi.nlm.nih.gov/gds/. 
All original data throughout our manuscript are 
available upon reasonable request by communi-
cating with the corresponding author.

Statistical analysis

R software (version 3.5.1) was used to conduct 
all statistical analyses. All tests were two-sided 
with a p-value < 0.05 deemed significant.

Results

Identification of DEARGs and functional 
enrichment analysis

Information about 557 multiple myeloma 
patients with TP53 mutations and 400 cases 
without TP53 mutations was downloaded from 
GSE136400 datasets of GEO. Our study was main-

Table I. Characteristics of 557 TP53-mutated pa-
tients

Parameter N (%)

Age [years]:

< 65 338 (60.68)

≥ 65 129 (23.16)

Unknown 90 (16.16)

Gender:

Male 291 (52.24)

Female 176 (31.60)

Unknown 90 (16.16)

ISS stage:

I 69 (12.39)

II 305 (54.76)

III 84 (15.08)

Unknown 99 (17.77)

ISS – International Staging System.
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ly focused on TP53-mutated patients. The patient 
demographic and clinical characteristics are pre-
sented in Table I.

Based on the criteria for FDR < 0.05 by us-
ing the “limma” package, we identified a  set of 
3329 DEGs between the TP53-mutated patients 
and TP53-unmutated patients, containing 2745 
up-regulated and 584 down-regulated DEGs. The 
volcano plot and the heatmap of DEGs are pre-
sented in Figures 1 A and B respectively.

We extracted altogether 222 ARGs from the 
HADb database. Then 3329 DEGs were intersect-
ed with 222 ARGs and thus we obtained 51 OCGs 
called DEARGs. The Venn diagram of DEGs and 
ARGs is shown in Figure 1 C.

KEGG and GO enrichment analysis was con-
ducted with the aim of providing a  panoramic 
view of the biological function of 51 DEARGs, as 
presented in Figures 2 A and B. The more genes 
were enriched in the corresponding terms, the 
darker the color was. KEGG analysis indicated 
the signaling pathways which were implicated 
in autophagy, mitophagy and so on. GO analysis 
showed that regulation of autophagy was the 
main biological process and molecular function 
of DEARGs.

Screening and verification of prognosis-
associated DEARGs by survival analysis

In a total of 557 TP53-mutated MM patients, 90 
cases lacked survival information. Finally, 467 cas-
es were included for further analysis. In order to 
identify the DEARGs associated with the progno-
sis, Kaplan-Meier curves for OS, the log-rank test 
and univariate Cox regression were performed by 
comparing the highly and lowly expressed DEARGs. 
A total of 9 prognosis-associated DEARGs were se-
lected: ATG2A, ATG2B, BIRC6, CASP8, CCL2, CFLAR, 
MAPK1, MAPK8, RB1CC1. The above 9 DEARGs 
with a  p-value < 0.05 in the univariate analysis 
were integrated into the LASSO regression mod-
el and multivariate Cox regression model. Finally, 
we obtained 3 DEARGs (CASP8, MAPK8, RB1CC1), 
which were independent risk factors. The surviv-
al curves for the above-mentioned 3 DEARGs are 
presented in Figure 3.

Establishment and estimation of risk score 
model for predicting OS

According to the multivariate Cox coefficients, 
the 3 DEARG-based risk score was constructed. 
The formula is: risk score = Exp(CASP8) * 0.73254 

Figure 1. Differentially expressed genes between 
TP53-mutated patients and TP53-unmutated pa-
tients. A  – Volcano plot of DEGs. Red nodes sug-
gest up-regulated genes. Green nodes suggest 
down-regulated genes. Black nodes suggest genes 
without differences. B – Heatmap of top 100 DEGs. 
C – Venn diagram of 3329 DEGs (blue area) and 
222 ARGs (orange area)

ARG – autophagy-related gene, DEG – differentially 
expressed gene, HAD – human autophagy database.
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+ Exp(MAPK1) * (–0.42603) + Exp(RB1CC1) * 
(–0.36719), in which Exp denotes the expression 
level of each DEARG.

We conducted the tROC analysis to determine 
the sensitivity and specificity of the predictive 
model. The results showed that the AUC values 
of the corresponding ROC curve for 5-year, 8-year 
and 10-year OS were 0.735, 0.686 and 0.662, re-
spectively (Figure 4 A).

Then we calculated the risk score of individu-
al patients, obtaining the median cut-off point of 
–1.724549. We categorized the patients into the 
high-risk group (n = 233) and low-risk group (n = 
234) according to the median threshold value. As 

demonstrated in the Kaplan-Meier survival curve 
(Figure 4 B), the high-risk group had a  bleaker 
prognosis compared with the low-risk group (p < 
0.0001). Figure 4 indicates that the DEARG-based 
risk score performed well in OS prediction of 
TP53-mutated MM patients.

Construction of the nomogram prognostic 
model

We further performed univariate and multivar-
iate Cox regression to analyze the correlation be-
tween the risk-score model and age, gender and 
International Staging System (ISS). As is shown in 
Table II, DEARG-based risk score model (HR = 3.29, 
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B
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GO biological process

 20 40 60

Rich factor

 20 30 40

Rich factor

Figure 2. Functional enrichment analysis of 51 DEARGs. A – KEGG analysis reveals the signaling pathway in which 
DEARGs are involved. B – GO analysis reveals the biological process in which DEARGs are involved

DEARG – differentially expressed autophagy-related gene, GO – Gene Ontology, KEGG – Kyoto Encyclopedia of Genes and 
Genomes.
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95% CI: 2.35–4.60) and ISS stage (HR = 1.90, 95% 
CI: 1.57–2.30) are independent prognostic factors 
correlated with OS (p < 0.001). With the purpose 
of establishing a more accurate prognostic model, 
we constructed a nomogram which incorporated 
ISS stage and risk score to forecast the 5-year, 
8-year and 10-year OS of TP53-mutated patients 
(Figure 5 A). However, the predictive outcome of 
5-year OS was not achieved. The calibration plot 
verified that the predictive performance of the no-
mogram for 8-year and 10-year OS agreed roughly 
with the actual outcome (Figure 5 B).

Subpopulations of immune-infiltrating cells 
by CIBERSORT estimation

The proportions of immune-infiltrating cells 
were estimated by applying the CIBERSORT al-
gorithm and the LM22 gene signature with 1000 
permutations, which could discriminate the phe-

notypes of 22 immune-infiltrating cells both sen-
sitively and specifically [26]. The immune cell in-
filtration landscape is presented in Figure 6. Then 
we analyzed the distribution differences between 
the high-risk group and low-risk group among the 
TP53-mutated MM patients. In altogether 22 im-
mune-infiltrating cell subtypes, significant differ-
ences between the high- and low-risk groups were 
found in 13 immune cells, including plasma cells, 
monocytes, resting mast cells, activated NK cells, 
activated dendritic cells, resting NK cells, memory 
B cells, activated mast cells, naïve CD4+T cells, fol-
licular helper T cells, gamma delta T cells, macro-
phages (M0), and CD8+T cells (Table III). The levels 
of CD8+T cells, gamma delta T cells, activated NK 
cells, activated dendritic cells, monocytes, resting 
mast cells, and macrophages (M0, M1) were lower 
in the high-risk group than the low-risk group (all 
p-value < 0.05), whereas the fractions of memo-

Figure 3. Kaplan-Meier curve for expression of 
CASP8, MAPK1, RB1CC1 in TP53-mutated multiple 
myeloma patients
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Figure 4. Prognostic analysis of three-DEARG risk-score model in the training set. A – Time-dependent ROC curve 
analyses indicate AUC values for 5-year (red), 8-year (yellow) and 10-year (green) OS. B – Kaplan-Meier OS curve of 
the high-risk (red) and low-risk (green) group. C – The risk-score distribution curve of high-risk (red) and low-risk 
(green) TP53-mutated patients in the OS model. D – Scattered plot reveals the OS status of TP53-mutated patients. 
Red dots suggest dead patients while green dots suggest patients who remain alive. E – Heatmap of the expres-
sion profiles of three DEARGs in the high- and low-risk group

AUC – area under the curve, DEARG – differentially expressed autophagy-related gene, OS – overall survival, ROC – receiver-
operating characteristic curve.
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Table II. Univariate and multivariate Cox regression analyses of OS

Parameter Univariate analysis Multivariate analysis

HR 95% CI P-value HR 95% CI P-value

Age 1 0.99–1.02 0.5 – – –

Gender 0.95 0.76–1.20 0.68 – – –

ISS stage 1.9 1.57–2.30 < 0.001 1.76 1.45–2.14 < 0.001

Risk score (high vs. low) 3.29 2.35–4.60 < 0.001 2.84 2.02–4.01 < 0.001

ISS – International Staging System, HR – hazard ratio, CI – confidence interval.
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ry B cells, plasma cells, naïve CD4+T cells, resting 
NK cells, and activated mast cells were higher in 
the high-risk group (all p-value < 0.05). The re-
sults indicated that the proportion of different im-
mune-infiltrating cells was closely associated with 
the aggressiveness and risk stratification and the 
DEARG-based risk signature might be correlated 
with the immune microenvironments of TP53-mu-
tated MM.

Discussion

Autophagy, a  complicated multi-step self-di-
gestion process, is regulated by multiple ARGs to 
guarantee homeostasis, energy supply and re-uti-
lization [27]. A  higher level of basal autophagy 
is often observed in MM cells and autophagy is 
vital for MM cell survival. Multiple myeloma cell 
apoptosis can be induced by autophagy distur-
bance via BECLIN-1 knockdown or pharmacologic 
repression with chloroquine or 3-methyladenine 
[28]. Our team revealed that autophagy inhibition 
by pharmacological methods augmented apopto-
sis in DNA-damaged MM cells and knockdown of 
beclin-1 or ATG5 resensitizes MM cells to apopto-
sis induced by DNA-damaging agents [19]. Also, 
induction of autophagy forcefully strengthened 

chemoresistance to gemcitabine in bladder carci-
noma [29].

Recently, many risk models based on ARG sig-
natures were established to forecast the survival 
outcomes of patients with non-small cell lung 
cancer [30], breast cancer [31], clear-cell renal cell 
carcinoma [32, 33], colorectal cancer [34], serous 
ovarian cancer [35], glioblastoma multiforme [36], 
prostate cancer [37] and bladder cancer [38]. So 
far, the prognostic effects of ARGs in TP53-mu-
tated MM have not been comprehensively inves-
tigated. Therefore, our study screened and finally 
identified three ARGs (CASP8, MAPK8, RB1CC1) 
to establish a risk model and predict the patient’s 
survival.

The CASP8 gene is located on chromosome 
2q33-34 and encodes caspase-8, which is a  ca-
nonical cysteine protease for the initiation and 
execution of cell apoptosis. Caspase-8 serves as 
a key component of death receptor-induced pro-
grammed cell death and is regarded as a  tumor 
suppressor [39]. Previous studies demonstrated 
that activated caspases are also implicated in au-
tophagy inhibition via cleaving autophagy-related 
proteins (Beclin-1, Atg5, and p62) [40, 41]. MAPK8 
(mitogen-activated protein kinase 8) encodes Jun 

Figure 5. Nomogram and calibration plot for predicting OS. A – The nomogram integrating the risk score and ISS 
stage. B – The calibration plot to testify the consistency of 8-year and 10-year OS between the predicted outcome 
and actual results 

ISS – International Staging System, OS – overall survival.
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Figure 6. Immune cell infiltration landscapes in high- and low-risk MM patients with TP-53 mutations according 
to DEARGs. A – Unsupervised clustering of 22 immune-infiltrating cells in 467 patients in the high- and low-risk 
group. B – Differences of immune cell infiltration abundances between high- and low-risk patients

ns – not significant (p > 0.05), *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001. 
DEARG – differentially expressed autophagy-related gene, MM – multiple myeloma.
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N-terminal kinase-1 (JNK1) and is the hallmark of 
the famous MAPK signaling pathway, which is in-
volved in the DNA damage response, autophagy, 
tumorigenesis and progression. RB1CC1 (retino-
blastoma coiled coil protein 1), also named FIP200 
(FAK family-interacting protein of 200 kDa), serves 
as a  constituent of the ULK1-ATG13-RB1CC1 or 
RB1CC1-ATG101 complex and plays an essential 
role in autophagosome formation. RB1CC1 is situ-
ated both in the nucleus and in the cytoplasm. RB-
1CC1 modulates intracellular signaling pathways 
through interacting with TSC1, p53, and PIASy, 
thus affecting the cell cycle, cell proliferation and 
differentiation [42, 43].

Traditional ISS only incorporated laboratory pa-
rameters such as serum albumin, lactate dehydro-
genase, and beta-2-microglobulin. Cytogenetic ab-
normalities were introduced into the Mayo clinic 
risk stratification for multiple myeloma (mSMART), 
which integrated del(17p), gain(1q), t(4;14), 

t(14:16), t(14;20) [2]. Both ISS and mSMART ex-
hibited limited performance in MM risk stratifica-
tion. We performed multivariate analysis to verify 
whether this three-DEARG-based risk model for 
survival prediction is independent of other prog-
nostic covariates. Furthermore, we constructed 
a nomogram to forecast the 5-year, 8-year and 10-
year OS of an individual patient. Nomograms have 
been widely used to quantitatively determine the 
clinical outcome at an individual level by combin-
ing each independent factor.

Immune-infiltrating cells constitute an integral 
part of the tumor microenvironment. By apply-
ing a machine-learning approach termed support 
vector regression, CIBERSORT is considered the 
most accurate algorithm, which allows for highly 
sensitive and specific discrimination and quanti-
fication of the proportions of 22 human immune 
infiltrating cells. CIBERSORT has also been used 
in construction of an immune-related risk model 
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lacks the important laboratory results about indi-
vidual MM patients, such as hemoglobin, creati-
nine, free light chain, monoclonal immunoglobulin 
and many other prognostic parameters. Thirdly, 
information with regard to disease progression, 
relapse or recurrence, infection, comorbidities 
and complications was neither recorded nor col-
lected in the GEO database. Moreover, the specific 
therapeutic regimens, including drug doses and 
administration frequency, were also not recorded. 
Fourthly, the DEARG risk model was established 
on a retrospective cohort and we were unable to 
find external validation datasets to further verify 
the accuracy and robustness of our model, which 
needs further validation in other independent pro-
spective cohorts. Lastly, functional experiments 
both in vivo and in vitro are warranted in future to 
explore the mechanisms of DEARGs in our model.

In conclusion, our study identified multiple 
ARGs which were correlated with the survival out-
comes of TP53-mutated patients. By incorporat-
ing CASP8, MAPK8 and RB1CC1, we established 
a three-ARG risk signature which turned out to be 
an independent prognostic factor. Furthermore, 
by integrating the risk model with ISS stage, we 
constructed a nomogram which performed well in 
predicting long-term survival of MM patients with 
TP53 mutations.
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